靚麗時尚館

位置:首頁 > 健康生活 > 心理

fx關於x=a對稱有什麼性質

心理6.17K
fx關於x=a對稱有什麼性質

滿足關係式f(x)=f(2a-x)這是函式影象具有對稱軸一般表示式,這也是判定函式有無對稱軸方法之一。圖象對稱即是點對稱,若圖象與X軸有n個交點,則交點橫座標之和等於na,若f(X)=-f(2a-X)+2b,則f(X)圖象關於點(a,b)成中心對稱。這是判定函式影象關於點對稱判定方法。

函式f(x)關於直線X二a對稱的性質如下:

一,如果函式f(x)的影象有頂點(即影象有最高點或最低點),其頂點的座標必在直線Ⅹ二a上。

二,因為函式的影象關於直線X二a對稱,所以對於函式f(X)中的任一X,都有點(2a一X,f(2a一X))在函式f(X)的影象上(因點(X,f(x))和點(2a一X,f(2a一x))是關於直線X二a對稱的點。

函式f(x)如果它的圖象關於直線=a對稱的話,最重要的性質是f(a十x)=f(a一x),反之這個性質的逆定理也成立。這是因為若設點P1(a十x,y),P2(a一x,y2)是函式影象上兩點,因(a十x十a-x)/2=a,又由已知y1=y2,所以P1與P2兩點關於直線x=a對稱,由於x是任意的,故函式的影象關於直線x=a對稱。

標籤:XA 性質 Fx